φυβλαςのβλογ
phyblasのブログ



[python] การใช้ multiprocessing เพื่อให้โปรแกรมทำงานหลายงานพร้อมกัน
เขียนเมื่อ 2018/03/17 18:31
แก้ไขล่าสุด 2024/02/22 10:55
ปกติเวลาที่รันโปรแกรมในไพธอนโปรแกรมจะทำตามคำสั่งตามลำดับทีละขั้นตอนโดยตลอดโปรแกรมถือว่าเป็นงานงานเดียวที่รันใน CPU ตัวเดียว

การที่โปรแกรมรันไปตามลำดับแบบนี้มีข้อดีคือเป็นระบบระเบียบ แต่ว่าในบางครั้งเราอาจจะมีงานบางอย่างที่ไม่จำเป็นต้องรอให้อีกงานนึงจบก่อนก็ได้ กรณีแบบนี้ถ้าสามารถรันโปรแกรมให้มันทำอะไรหลายๆไปพร้อมๆกันได้ก็จะทำให้การทำงานเร็วขึ้นมาก

ปกติแล้วคอมพิวเตอร์มีความสามารถที่จะทำงานหลายๆอย่างในเวลาเดียวกันได้อยู่แล้ว แต่ปัญหาคือหากเขียนโปรแกรมไพธอนด้วยวิธีทั่วไปยังไงก็รันได้ทีละงานในเวลาเดียว หากอยากรันหลายงานก็ต้องมาสั่งหลายๆครั้งเอง เช่นเปิดหน้าคอมมานด์ไลน์มาหลายๆอันแล้วรันไปทีละอัน แต่แบบนั้นต้องมาคอยเปิดหลายอัน อีกทั้งหากทำแบบนั้นก็จะเป็นการรันคนละโปรแกรม ไม่สามารถเอามาเชื่อมโยงกันได้โดยตรง

ยังดีที่ไพธอนมีเตรียมคำสั่งที่ใช้สำหรับรันหลายงานในเวลาเดียวกันได้โดยอัตโนมัติในโปรแกรมเดียว คำสั่งนั้นอยู่ในมอดูลชื่อ multiprocessing เป็นมอดูลติดตัวที่มีอยู่ในไพธอนอยู่แล้ว สามารถเรียกใช้ได้เลย



การใช้งาน
ขอเริ่มด้วยการยกตัวอย่างการทำงานอย่างง่าย
import multiprocessing as mp

def job():
    print('เริ่มทำงาน')
    for i in range(1000000):
        2**2
    print('งานเสร็จแล้ว')

if(__name__=='__main__'):
    p = mp.Process(target=job)
    p.start()
    print('สั่งงาน')

ผลที่ได้
เริ่มทำงาน
สั่งงาน
งานเสร็จแล้ว

จะเห็นว่าขั้นตอนการใช้ก็คือ ให้นิยามฟังก์ชันของงานที่เราต้องการให้มันทำ จากนั้นให้สร้างอ็อบเจ็กต์ multiprocessing.Process ขึ้น (ในที่นี้ย่อเป็น mp.) โดยใส่ค่า target เป็นตัวฟังก์ชันของงานตัวนั้น จากนั้นก็ใช้เมธอด .start() จะเป็นการเริ่มทำงานในฟังก์ชันนั้นทันที

สำหรับ if(__name__=='__main__'): ในที่นี้เป็นธรรมเนียมปฏิบัติที่มักจะต้องเขียนประจำเวลาใช้งาน multiprocessing เพื่อให้คำสั่งนี้ถูกเรียกใช้เฉพาะเวลาที่ถูกรันโดยตรง ไม่ใช่ถูกเรียกในฐานะมอดูล ซึ่งจะป้องกันปัญหาที่อาจเกิดขึ้นได้

เกี่ยวกับเรื่องรูปแบบการเขียนแบบนี้มีเขียนไว้ใน https://phyblas.hinaboshi.com/tsuchinoko35

ซึ่งผลที่ได้จะเห็นว่าข้อความสุดท้ายใน main ถูกพิมพ์ออกมาก่อนทั้งๆที่สั่ง p.start() ไปแล้ว นั่นเพราะหลังจากสั่งเริ่มงานไปใน job จะเจองานที่ต้องใช้เวลาทำให้คำสั่ง print ตัวหลังมาช้าลงไป แต่ คำสั่ง print ใน main ที่ตามมานั้นต่อมาทันที

นี่แสดงให้เห็นว่าคำสั่งที่ตามต่อมาหลังจากสั่งเริ่มงานไปแล้วนั้นมันไม่ได้รอให้งานเสร็จก่อนจึงทำงาน งานถูกสั่งทิ้งไว้แล้วโปรแกรมหลักก็ไปทำอะไรอย่างอื่นต่อได้ทันที

กรณีที่ฟังก์ชันนั้นต้องการอาร์กิวเมนต์ ให้ใส่ลงในค่า args แทนที่จะเรียก job(1,2) แบบฟังก์ชันทั่วไป คือเขียนแบบนี้
def job(a,b):
    print(a+b)

if(__name__=='__main__'):
    p = mp.Process(target=job,args=(1,2))
    p.start()

จากนั้นลองดูกรณีที่มีการรัน ๒ งานพร้อมกัน เช่นแบบนี้
import time

def job(a,x):
    for i in range(5):
        x += 1
        time.sleep(0.5)
        print('%s=%d'%(a,x))

if(__name__=='__main__'):
    p1 = mp.Process(target=job,args=('x',1))
    p2 = mp.Process(target=job,args=('y',11))
    p1.start()
    p2.start()
    print('สั่งงานไปแล้ว')

รันแล้วจะได้
สั่งงานไปแล้ว
x=2
y=12
x=3
y=13
x=4
y=14
x=5
y=15
x=6
y=16

ในที่นี้มีการใช้คำสั่ง time.sleep นี่เป็นคำสั่งสำหรับทำให้โปรแกรมพักการทำงานตามเวลาที่กำหนด หน่วยเป็นวินาที ที่ใส่ลงไปก็เพื่อให้เห็นความแตกต่างของลำดับการทำงานชัดเจน

ผลที่ได้จะเห็นว่าทั้งสองงานถูกทำไปพร้อมๆกัน จึงเห็นค่าถูกพิมพ์ออกมาสลับกันไปแบบนี้

หากต้องการรันหลายงานพร้อมกันก็อาจเขียนแบบนี้ได้
def job(a):
    for i in range(1,4):
        time.sleep(0.5)
        print('งานที่ %d รอบที่ %d'%(a,i))

if(__name__=='__main__'):
    for j in range(1,6):
        p = mp.Process(target=job,args=(j,))
        p.start()
    print('สั่งงานไปแล้ว')

ผลที่ได้
สั่งงานไปแล้ว
งานที่ 1 รอบที่ 1
งานที่ 2 รอบที่ 1
งานที่ 3 รอบที่ 1
งานที่ 4 รอบที่ 1
งานที่ 5 รอบที่ 1
งานที่ 1 รอบที่ 2
งานที่ 2 รอบที่ 2
งานที่ 3 รอบที่ 2
งานที่ 4 รอบที่ 2
งานที่ 5 รอบที่ 2
งานที่ 2 รอบที่ 3
งานที่ 1 รอบที่ 3
งานที่ 3 รอบที่ 3
งานที่ 4 รอบที่ 3
งานที่ 5 รอบที่ 3


จะเห็นว่าแต่ละรอบของทุกงานทำเสร็จก่อนจึงเริ่มงานของรอบถัดไป แสดงให้เห็นว่าทุกงานทำไปพร้อมๆกัน ไม่ได้รองานนึงเสร็จค่อยทำอีกงาน



การใช้ join
หากมีคำสั่งบางอย่างที่ต้องการรอให้งานที่สั่งไปเสร็จก่อนแล้วค่อยทำ จำเป็นจะต้องใช้เมธอด join

ตัวอย่างการใช้
def job(a):
    for i in range(2):
        time.sleep(0.5)
        print('งานที่ %d รอบที่ %d'%(a,i+1))

if(__name__=='__main__'):
    pp = []
    for j in range(4):
        p = mp.Process(target=job,args=(j+1,))
        p.start()
        pp.append(p)
    print('เริ่มงานได้แล้ว')
    for p in pp:
        p.join()
    print('เก็บกวาดหลังเลิกงาน')

ผลที่ได้
เริ่มงานได้แล้ว
งานที่ 1 รอบที่ 1
งานที่ 2 รอบที่ 1
งานที่ 3 รอบที่ 1
งานที่ 4 รอบที่ 1
งานที่ 1 รอบที่ 2
งานที่ 2 รอบที่ 2
งานที่ 3 รอบที่ 2
งานที่ 4 รอบที่ 2
เก็บกวาดหลังเลิกงาน

จะเห็นว่า print ที่เขียนก่อน join จะทำงานก่อน แต่ print ที่อยู่หลัง join จะรอให้ทำงานจบ

หากทุกงานที่สั่งไปมีการใช้ join โปรแกรมก็จะรอให้ทุกงานเสร็จทั้งหมดก่อน



การใช้ queue
ปกติแล้วค่าตัวแแปรต่างๆที่อยู่ภายในฟังก์ชันของงานนั้นไม่สามารถที่จะคืนกลับมายังโปรแกรมหลักได้ เพราะเราไม่ได้เขียนคำสั่งในรูปแบบของ x = job() แบบนี้ แต่เวลารันเราเริ่มด้วยคำสั่ง p.start() ต่อให้เขียน return ไปก็ไม่ได้อะไรกลับมา เช่น
def job(a):
    return a

if(__name__=='__main__'):
    p = mp.Process(target=job,args=(1,))
    a = p.start()
    print(a)

ได้
None

ดังนั้นต้องใช้วิธีอื่นในการที่จะได้ตัวแปรกลับออกมาจากงานที่ทำ วิธีหนึ่งที่สามารถใช้ได้ก็คือใช้ Queue

สามารถเขียนได้แบบนี้
def job(a,q):
    q.put(a**3)

if(__name__=='__main__'):
    q = mp.Queue()
    p = mp.Process(target=job,args=(2,q))
    p.start()
    a = q.get()
    print(a)

ก่อนอื่นตอนนิยามฟังก์ชันของงานต้องใส่ตัวแปรนึงสำหรับรับค่าไปด้วย จากนั้นใช้เมธอด put เพื่อป้อนค่าที่ต้องการให้คืนกลับไป

แล้วในโปรแกรมหลักให้สร้างตัวแปรนึงขึ้นมาเป็นออบเจ็กต์ของ mp.Queue แล้วป้อนใส่มันลงไปในอาร์กิวเมนต์ของฟังก์ชันด้วย จากนั้นก็สามารถเอาค่าที่คืนกลับมาได้โดยใช้เมธอด get

จะใช้ put กี่ครั้งก็ได้ในฟังก์ชัน แล้วเวลา get ก็จะได้ค่าออกมาทีละค่า เรียงตามลำดับ
def job(a,b,q):
    q.put(a*b)
    q.put(a**b)

if(__name__=='__main__'):
    q = mp.Queue()
    p = mp.Process(target=job,args=(2,3,q))
    p.start()
    print(q.get())
    print(q.get())

ได้
6
8


เพียงแต่ข้อควรระวังคือมีการใช้ put กี่ครั้งก็ต้อง get เป็นจำนวนครั้งเท่านั้น หาก get เกินโปรแกรมจะหยุดทำงานไปเลย

นั่นเพราะถ้าเราใช้ get เมื่อไหร่โปรแกรมหลักจะหยุดรอให้มีการ put เกิดขึ้นในฟังก์ชันจึงรับค่ามาแล้วทำงานต่อ ไม่งั้นโปรแกรมจะไม่เดินต่อไป

กรณีที่ส่งค่า q ไปแล้วแต่ไม่มีการ put สักที เช่นแบบนี้ โปรแกรมจะรอไปตลอดกาล ไม่ขยับไปไหน
def job(q):
    ropaithoe = 'รอไปเถอะ'
    print(ropaithoe)

if(__name__=='__main__'):
    q = mp.Queue()
    p = mp.Process(target=job,args=(q,))
    p.start()
    a = q.get()

ดังนั้นจึงต้องระวังด้วย เวลาใช้วิธีนี้

กรณีที่รันสองงานขึ้นไปพร้อมกันโดยใช้ q ตัวเดียวกัน ค่าที่ได้จะเรียงตามลำดับว่าใคร put ก่อนกัน ไม่ได้อยู่ที่ใครเริ่มต้นก่อน เช่น
def job(s,ro,q):
    time.sleep(ro)
    q.put(s)

if(__name__=='__main__'):
    q = mp.Queue()
    p1 = mp.Process(target=job,args=('p1',3,q))
    p1.start()
    p2 = mp.Process(target=job,args=('p2',2,q))
    p2.start()
    print(q.get())
    print(q.get())


จะได้
p2
p1

นั่นเพราะว่า p2 สั่งให้รอแค่ 2 วินาที แต่ p1 รอ 3 วินาที ดังนั้น p2 จึงเสร็จก่อน ใส่ค่าลงใน q ก่อน

ดังนั้นควรจะเข้าใจลำดับข้อมูลให้ดี ไม่เช่นนั้นจะได้ค่าออกมาผิด



ตัวแปรร่วมสำหรับใช้ในทุกงาน
ปกติแล้วหากเราประกาศตัวแปรไว้นอกฟังก์ชัน ตัวแปรนั้นสามารถเปลี่ยนแปลงค่าได้จากภายในฟังก์ชันโดยใช้คำสั่ง global (ใครไม่แม่นอ่านทวนได้ใน https://phyblas.hinaboshi.com/tsuchinoko19)

เช่นมีฟังก์ชันแบบนี้
c = [1]
def job(a):
    global c
    c += [a]
    print(c)

ถ้าเรียกใช้โดยทั่วไปแบบนี้
job(2)
job(3)

จะได้
[1, 2]
[1, 2, 3]

นั่นคือลิสต์ c ค่อยๆถูกเติม

แต่หากเรียกด้วย Process แบบนี้
c = [1]
if(__name__=='__main__'):
    p1 = mp.Process(target=job,args=(2,))
    p1.start()
    p2 = mp.Process(target=job,args=(3,))
    p2.start()

ผลที่ได้
[1, 2]
[1, 3]

จะเห็นว่าถึง p1 รันก่อนแล้วเติมค่าให้ลิสต์ไป แต่พอ p2 เรียกใช้อีกกลับอยู่ในสภาพก่อนเติมแล้วจึงเติมใหม่อีก แสดงว่าตัวแปรนี้ไม่สามารถใช้ร่วมกันได้

สำหรับกรณีแบบนี้ การกำหนดตัวแปรสากลที่ใช้ร่วมจะต้องทำโดยใช้ mp.Value

ตัวอย่าง
def job(a):
    v.value +=1
    print(v.value)

if(__name__=='__main__'):
    v = mp.Value('i',0)
    p1 = mp.Process(target=job,args=(2,))
    p1.start()
    p2 = mp.Process(target=job,args=(3,))
    p2.start()

ได้
1
2

การใช้ Value แบบนี้ต้องกำหนดชนิดของตัวแปรไปด้วย โดยใส่ชนิดตัวแปรก่อนค่อยตามด้วยค่า

ชนิดของข้อมูลจะใช้ตัวย่อ อ้างอิงตามนี้ https://docs.python.org/3/library/array.html

ในที่นี้ i หมายถึงตัวแปรจำนวนเต็ม

ค่าของตัวแปรจะไม่ได้อยู่ที่ตัวแปรโดยตรงแต่อยู่ที่แอตทริบิวต์ .value ดังนั้นจึงต้องพิมพ์ .value ต่อท้ายเวลาใช้อย่างที่เห็น

หากต้องการเป็นตัวแปรหลายตัวก็ต้องทำเป็นอาเรย์ โดยใช้ mp.Array
def job(a,b):
    v[a] += b
    print(v[:])

if(__name__=='__main__'):
    v = mp.Array('i',[0,0,0,1])
    for i in range(4):
        p = mp.Process(target=job,args=(i,i+2))
        p.start()
        p.join()

ได้
[2, 0, 0, 1]
[2, 3, 0, 1]
[2, 3, 4, 1]
[2, 3, 4, 6]

อาเรย์ในที่นี้นั้นจะคล้ายๆกับอาเรย์ในภาษา C หรือ ndarray ของ numpy คือสามารถแก้ไขค่าภายในได้แต่ไม่สามารถเพิ่มหรือลดสมาชิกได้ นอกจากสร้างใหม่ไปเลย



การใช้ Pool
Pool นั้นเป็นอีกวิธีที่ใช้สั่งงานเช่นเดียวกันกับ Process เพียงแต่สามารถสั่งให้คืนค่าออกมาได้โดยตรง ถือเป็นอีกวิธีหนึ่งที่จะสามารถนำค่าที่คืนกลับจากงานที่สั่งไปมาใช้ได้

การใช้งานจะคล้ายกับ Process โดยมีวิธีการเขียนดังนี้
def job(a):
    return [a,a**2,a**3]

if(__name__=='__main__'):
    pool = mp.Pool(processes=1)
    a = pool.apply_async(job,(2,))
    b = pool.apply_async(job,(3,))
    print(a.get())
    print(b.get())

ได้
[2, 4, 8]
[3, 9, 27]

เริ่มจากสร้างออบเจ็กต์ของ Pool ขึ้นมา จากนั้นก็สั่งให้เริ่มทำงานโดยใช้เมธอด apply_async ใส่ฟังก์ชันแล้วตามด้วยอาร์กิวเมนต์

ถ้าเจอเมธอด get โปรแกรมก็จะทำการรอให้ฟังก์ชันทำงานจนจบแล้วคืนค่ากลับมา ไม่เช่นนั้นจะไม่เดินต่อ

ค่า processes ที่ใส่เข้าไปตอนสร้าง Pool นี้คือจำนวนที่จะให้มันทำงานสูงสุดในเวลาเดียวกัน ถ้าเราสั่งงานให้ pool นั้นไปมากกว่าจำนวนที่กำหนดมันก็จะรอให้งานที่เริ่มทำก่อนนั้นจบลงไปก่อน เช่น
def job(a):
    for i in range(1,4):
        time.sleep(0.5)
        print(100*a+i)

if(__name__=='__main__'):
    pool = mp.Pool(processes=2)
    for j in range(1,6):
        pool.apply_async(job,(j,))

ได้
101
201
102
202
103
203
301
401
302
402
303
403
501
502
503


จะเห็นว่างานที่ 1 และ 2 ทำพร้อมกัน แล้วต่อมางานที่ 3 และ 4 ก็ทำงานพร้อมกัน แล้วจึงเริ่มงานที่ 5 นั่นเพราะสั่งให้ทำงานสูงสุดแค่ 2

นอกจากใช้ apply_async แล้ว ยังมีอีกเมธอดที่สะดวกที่มักใช้ใน Pool คือ map

map ใช้สั่งงานโดยรับค่าเข้าไปหลายตัวพร้อมกันแล้วคืนค่าของแต่ละงานกลับมาเป็นลิสต์
def job(a):
    return a**2/2

if(__name__=='__main__'):
    pool = mp.Pool(processes=5)
    print(pool.map(job,[1,2,3,10,18]))

ได้
[0.5, 2.0, 4.5, 50.0, 162.0]


ดูเผินๆอาจคล้ายกับใช้ฟังก์ชัน map ธรรมดา
print(list(map(job,[1,2,3,10,18])))

ผลที่ได้ก็เหมือนกัน เพียงแต่ว่าการสั่งด้วย Pool แบบนี้งานทั้งหมดจะทำไปพร้อมกันในเวลาเดียวกัน จึงเร็วขึ้นมาก



สถานะการทำงานของโปรแกรม
สุดท้ายนี้ลองมาดูตรงนี้สักหน่อย

หากขณะที่โปรแกรมทำงานอยู่เราไปดูที่สถานะการทำงานของโปรแกรมเช่นผ่าน ตัวจัดการงาน (task manager) ของ windows หรือ ตัวตรวจสอบกิจกรรม (activity monitor) ของ mac ก็จะเห็นได้ว่ามันมีงาน python โผล่มาเต็มไปหมด แยกกันชัดเจน เช่นลองรันโค้ดนี้
def job(a):
    for i in range(10000000):
        a += i

if(__name__=='__main__'):
    pool = mp.Pool(processes=30)
    pool.map(job,range(100))

จากนั้นจะเห็นว่าเครื่องทำงานทั้งหมดตามที่สั่งไปอย่างเต็มที่ แน่นอนว่าไม่ใช่ว่าสั่งไปกี่งานก็จะเร็วขึ้นเท่านั้น แต่ CPU ของแต่ละเครื่องก็มีขีดจำกัดอยู่ ถ้าเครื่องทำงานเต็มที่แล้วก็จะทำให้ทุกอย่างช้าลงตาม



ดังนั้นควรจะตรวจดูสถานะการทำงานของโปรแกรมในเครื่องเพื่อให้ใช้ได้อย่างมีประสิทธิภาพสูงสุดและไม่ให้ทำงานหนักเกินไปโดยเปล่าประโยชน์



อ้างอิง


-----------------------------------------

囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧

ดูสถิติของหน้านี้

หมวดหมู่

-- คอมพิวเตอร์ >> เขียนโปรแกรม >> python

ไม่อนุญาตให้นำเนื้อหาของบทความไปลงที่อื่นโดยไม่ได้ขออนุญาตโดยเด็ดขาด หากต้องการนำบางส่วนไปลงสามารถทำได้โดยต้องไม่ใช่การก๊อปแปะแต่ให้เปลี่ยนคำพูดเป็นของตัวเอง หรือไม่ก็เขียนในลักษณะการยกข้อความอ้างอิง และไม่ว่ากรณีไหนก็ตาม ต้องให้เครดิตพร้อมใส่ลิงก์ของทุกบทความที่มีการใช้เนื้อหาเสมอ

目次

日本による名言集
モジュール
-- numpy
-- matplotlib

-- pandas
-- manim
-- opencv
-- pyqt
-- pytorch
機械学習
-- ニューラル
     ネットワーク
javascript
モンゴル語
言語学
maya
確率論
日本での日記
中国での日記
-- 北京での日記
-- 香港での日記
-- 澳門での日記
台灣での日記
北欧での日記
他の国での日記
qiita
その他の記事

記事の類別



ติดตามอัปเดตของบล็อกได้ที่แฟนเพจ

  記事を検索

  おすすめの記事

รวมร้านราเมงในเมืองฟุกุโอกะ
ตัวอักษรกรีกและเปรียบเทียบการใช้งานในภาษากรีกโบราณและกรีกสมัยใหม่
ที่มาของอักษรไทยและความเกี่ยวพันกับอักษรอื่นๆในตระกูลอักษรพราหมี
การสร้างแบบจำลองสามมิติเป็นไฟล์ .obj วิธีการอย่างง่ายที่ไม่ว่าใครก็ลองทำได้ทันที
รวมรายชื่อนักร้องเพลงกวางตุ้ง
ภาษาจีนแบ่งเป็นสำเนียงอะไรบ้าง มีความแตกต่างกันมากแค่ไหน
ทำความเข้าใจระบอบประชาธิปไตยจากประวัติศาสตร์ความเป็นมา
เรียนรู้วิธีการใช้ regular expression (regex)
การใช้ unix shell เบื้องต้น ใน linux และ mac
g ในภาษาญี่ปุ่นออกเสียง "ก" หรือ "ง" กันแน่
ทำความรู้จักกับปัญญาประดิษฐ์และการเรียนรู้ของเครื่อง
ค้นพบระบบดาวเคราะห์ ๘ ดวง เบื้องหลังความสำเร็จคือปัญญาประดิษฐ์ (AI)
หอดูดาวโบราณปักกิ่ง ตอนที่ ๑: แท่นสังเกตการณ์และสวนดอกไม้
พิพิธภัณฑ์สถาปัตยกรรมโบราณปักกิ่ง
เที่ยวเมืองตานตง ล่องเรือในน่านน้ำเกาหลีเหนือ
ตระเวนเที่ยวตามรอยฉากของอนิเมะในญี่ปุ่น
เที่ยวชมหอดูดาวที่ฐานสังเกตการณ์ซิงหลง
ทำไมจึงไม่ควรเขียนวรรณยุกต์เวลาทับศัพท์ภาษาต่างประเทศ

月別記事

2025年

1月 2月 3月 4月
5月 6月 7月 8月
9月 10月 11月 12月

2024年

1月 2月 3月 4月
5月 6月 7月 8月
9月 10月 11月 12月

2023年

1月 2月 3月 4月
5月 6月 7月 8月
9月 10月 11月 12月

2022年

1月 2月 3月 4月
5月 6月 7月 8月
9月 10月 11月 12月

2021年

1月 2月 3月 4月
5月 6月 7月 8月
9月 10月 11月 12月

もっと前の記事

ไทย

日本語

中文