φυβλαςのβλογ
phyblasのブログ



วิธีการ k เฉลี่ยโดยใช้ sklearn
เขียนเมื่อ 2017/12/24 15:46
แก้ไขล่าสุด 2024/10/12 09:31
ตอนที่แล้วได้แนะนำวิธีการเขียนโปรแกรมเพื่อแบ่งกระจุกข้อมูลด้วยวิธีการ k เฉลี่ยไปแล้วใน https://phyblas.hinaboshi.com/20171220

คำสั่งสำหรับวิธีการ k เฉลี่ยนั้นที่จริงแล้วมีบรรจุอยู่ใน sklearn ซึ่งทำให้สามารถใช้งานได้อย่างง่ายดายสะดวก ดังนั้นในตอนนี้จะมาแนะนำวิธีการใช้

คลาสในลักษณะนี้กับคลาส Kmeans ที่เขียนในตอนที่แล้วมีอยู่ในมอดูลย่อย sklearn.cluster



ตัวอย่างการใช้เบื้องต้น
ขอยกตัวอย่างการใช้โดยสร้างข้อมูลเป็นกระจุกด้วยฟังก์ชัน make_blobs (https://phyblas.hinaboshi.com/20161127) แล้วแบ่งเป็น ๑๐ กลุ่มด้วยวิธี k เฉลี่ย
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

np.random.seed(10)
X,_ = datasets.make_blobs(n_samples=1000,n_features=2,centers=5,cluster_std=2)

km = KMeans(10) # หรือ km = KMeans(n_clusters=10)
km.fit(X)
z = km.predict(X)

plt.axes(aspect=1).scatter(X[:,0],X[:,1],c=z,edgecolor='k',cmap='jet')
plt.show()


ขั้นตอนการใช้โดยทั่วไปจะเป็นดังที่เห็นคือ
1. สร้างออบเจ็กต์แบบจำลองขึ้นจากคลาส KMeans
2. ใช้เมธอด fit เพื่อป้อนค่าตัวแปรต้นไปให้แบบจำลองทำการเรียนรู้
3. ใช้เมธอด predict เพื่อหาคำตอบว่าแบ่งกลุ่มได้เป็นกลุ่มไหน

หากเทียบกับวิธีการเรียนรู้แบบมีผู้สอนอย่างวิธีการเพื่อนบ้านใกล้สุด k ตัว (https://phyblas.hinaboshi.com/20171031) ก็จะพบว่าคล้ายกัน แต่ที่ต่างกันชัดเจนก็คือในการเรียนรู้ไม่ต้องป้อนข้อมูลผลลัพธ์ (ในที่นี้คือ z) ป้อนแค่ข้อมูลตัวแปรต้น (X)

นอกจากนี้แล้วเรายังสามารถลัดขั้นตอนได้ด้วย โดยใช้เมธอด fit_predict ซึ่งเป็นการให้เรียนรู้เสร็จแล้วก็ทำนายเอาผลของจุดที่เรียนรู้ออกมาทันที ดังนั้นตรง km.fit(X) และ z = km.predict(X) หากเขียนใหม่จะได้เป็น
z = km.fit_predict(X)

ผลที่ได้จะไม่ต่างกัน



การปรับแต่ง
ส่วนคีย์เวิร์ดที่ใส่ไปตอนสร้างออบเจ็กต์นั้นจะเป็นตัวปรับแต่งคุณสมบัติของแบบจำลอง โดยตัวที่สำคัญที่สุดคือ n_clusters คือจำนวนกระจุก ในที่นี้ใส่ n_clusters=10 แต่เนื่องจาก n_cluster เป็นคีย์เวิร์ดตัวแรกจะใส่แค่ 10 เฉยๆเลยก็ได้

สรุปคีย์เวิร์ดตอนสร้างออบเจ็กต์
  ความหมาย ค่าตั้งต้น
n_clusters จำนวนกระจุก 8
init ตำแหน่งเริ่มต้นของเซนทรอยด์ k-means++
n_init จำนวนครั้งที่เริ่มค้นใหม่โดยตั้งต้นเซนทรอยด์ต่างกัน 10
max_iter จำนวนครั้งการปรับจุดเซนทรอย์ดมากสุด 300
tol ระยะห่างสูงสุดที่จะถือว่าไม่มีมีการเปลี่ยนแปลง 1e-4

สำหรับ init นั้นคือวิธีการที่จะกำหนดว่าเซนทรอยด์เริ่มต้นควรอยู่ไหน หากเราไม่ได้ใส่อะไรจุดเริ่มต้นจะถูกกำหนดด้วยวิธีที่เรียกว่า k-means++ นี่เป็นอัลกอริธึมในการหาจุดเริ่มต้นที่ดีที่สุดที่นิยมใช้

แต่หากใส่เป็น init='random' ก็จะเริ่มด้วยการสุ่มตำแหน่ง โดยที่ n_init คือจำนวนครั้งที่จะสุ่มจุดเริ่มต้นเพื่อคำนวณหาค่าที่ดีที่สุด

นอกจากนี้หากต้องการกำหนดจุดเริ่มต้นเองก็สามารถทำได้ด้วย โดยใส่ init เป็นอาเรย์ของค่าตำแหน่งเริ่มต้นที่ต้องการ



ค่าที่ถูกเก็บอยู่ภายในหลังเรียนรู้แล้ว
หลังจากใช้เมธอด fit (หรือ fit_predict) ไปแล้วแบบจำลองจะมีการเก็บค่าบางอย่างไว้ สามารถนำมาใช้ได้

.cluster_centers_ คือตำแหน่งของจุดเซนทรอยด์ที่ได้มา จะมีขนาดเท่ากับ (จำนวนเซนทรอยด์,จำนวนมิติ)

.labels_ ผลการแบ่งกลุ่มของข้อมูลที่ใช้เรียนรู้

.inertia_ คือค่าผลรวมความคลาดเคลื่อนกำลังสอง (SSE) ของการแบ่งกลุ่ม

ลองดูค่าที่ได้จากการเรียนรู้ในตัวอย่างเมื่อครู่
print(km.cluster_centers_)
print(km.labels_.shape)
print(km.labels_[:20])
print(km.inertia_)

ได้
[[ -5.52548853  -6.49102561]
 [ -4.57531022   4.50406492]
 [  6.64139849  -8.36522687]
 [  3.01991442   3.65956666]
 [  5.08543653 -11.02605512]
 [  0.99443006  -7.1657286 ]
 [ -7.44528283  -9.38607965]
 [  2.30533539   6.64119426]
 [ -0.46264094  -4.12857656]
 [ -7.59735744   6.20728313]]
(1000,)
[4 6 9 2 1 8 8 8 4 6 5 4 0 3 6 5 0 6 4 8]
4565.45216688



การใช้เพื่อเป็นตัวแปลงพิกัดเพื่อเพิ่มหรือลดมิติของข้อมูล
วิธีการ k เฉลี่ยยังถูกใช้เพื่อแปลงพิกัดของข้อมูลเป็นค่าระยะห่างจากจุดเซนทรอยด์ได้ด้วย

สามารถทำได้โดยที่หลังจากสั่ง .fit หาค่าจุดเซนทรอยด์จากข้อมูลได้แล้ว ก็ใช้เมธอด .transform เพื่อคำนวณค่าระยะห่างจากจุดเซนทรอยด์แต่ละจุด นำค่าที่ได้มาเป็นค่าในระบบพิกัดใหม่

ยกตัวอย่างเช่นลองดูข้อมูลที่มีการแบ่งเป็น ๓ กระจุกในสองมิติ แล้วลองนำมาแปลงพิกัดใหม่เป็นสามมิติตามจำนวนกระจุก
from mpl_toolkits.mplot3d import Axes3D

np.random.seed(26)
X,z = datasets.make_blobs(n_samples=1000,n_features=2,centers=3,cluster_std=2.1)

km = KMeans(n_clusters=3)
km.fit(X)
X2 = km.transform(X)
plt.axes(aspect=1)
plt.scatter(X[:,0],X[:,1],c=z,edgecolor='k',cmap='cool')
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],300,'#AAEE55',marker='*',edgecolor='#DD9900',lw=2)

plt.figure(figsize=[6,6])
ax = plt.axes([0,0,1,1],projection='3d')
ax.scatter(X2[:,0],X2[:,1],X2[:,2],c=z,edgecolor='k',cmap='cool')
cen = km.transform(km.cluster_centers_)
ax.scatter(cen[:,0],cen[:,1],cen[:,2],s=300,c='#AAEE55',marker='*',edgecolor='#DD9900',lw=2)
plt.show()



พิกัดใหม่นี้จะมีมิติตามจำนวนเซนทรอยด์ และมีค่าตามระยะห่างจากเซนทรอยด์

สำหรับกรณีที่จะทั้ง fit และ transform จุดเดียวกันไปพร้อมกันแบบนี้สามารถใช้เมธอด .fit_transform เช่นเดียวกับ .fit_predict ดังนั้นอาจเขียนเป็นแบบนี้ได้
X2 = km.fit_transform(X)

ลองสร้างจุดกระจายทั่วในสองมิติแล้วแปลงดู
mx,my = np.meshgrid(np.linspace(X.min(0)[0],X.max(0)[0],21),np.linspace(X.min(0)[1],X.max(0)[1],21))
mX = np.stack([mx.ravel(),my.ravel()],1)
mz = km.predict(mX)
mX2 = km.transform(mX)

plt.axes(aspect=1)
plt.scatter(mX[:,0],mX[:,1],c=mz,edgecolor='k',cmap='plasma')

plt.figure(figsize=[6,6])
ax = plt.axes([0,0,1,1],projection='3d')
ax.scatter(mX2[:,0],mX2[:,1],mX2[:,2],c=mz,edgecolor='k',cmap='plasma')
plt.show()



ผลที่ได้เหมือนเอากระดาษสี่เหลี่ยมแผ่นหนึ่งมาแผ่ยืดแผ่ในสามมิติ

นี่เป็นตัวอย่างการแปลงจากมิติน้อยไปมาก แต่จะแปลงจากมิติมากไปน้อยก็ได้เช่นกัน

เช่น ลองแปลงจากข้อมูลที่มี ๘ มิติ ซึ่งไม่สามารถวาดภาพแสดงได้ มาเป็น ๒ มิติ ซึ่งสามารถแสดงแผนภาพการกระจายให้เห็นได้ง่าย
np.random.seed(5)
X,z = datasets.make_blobs(n_samples=1000,n_features=8,centers=5,cluster_std=1)
X2 = KMeans(2).fit_transform(X)
plt.figure()
plt.axes(aspect=1)
plt.scatter(X2[:,0],X2[:,1],c=z,edgecolor='k',cmap='gist_ncar')
plt.show()


การทำแบบนี้อาจเรียกได้ว่าเป็นวิธีหนึ่งในการลดมิติด้วยการสกัดเอาค่าแทนลักษณะ (特征抽取, feature extraction)



-----------------------------------------

囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧

ดูสถิติของหน้านี้

หมวดหมู่

-- คอมพิวเตอร์ >> ปัญญาประดิษฐ์
-- คอมพิวเตอร์ >> เขียนโปรแกรม >> python >> numpy
-- คอมพิวเตอร์ >> เขียนโปรแกรม >> python >> matplotlib
-- คอมพิวเตอร์ >> เขียนโปรแกรม >> python >> sklearn

ไม่อนุญาตให้นำเนื้อหาของบทความไปลงที่อื่นโดยไม่ได้ขออนุญาตโดยเด็ดขาด หากต้องการนำบางส่วนไปลงสามารถทำได้โดยต้องไม่ใช่การก๊อปแปะแต่ให้เปลี่ยนคำพูดเป็นของตัวเอง หรือไม่ก็เขียนในลักษณะการยกข้อความอ้างอิง และไม่ว่ากรณีไหนก็ตาม ต้องให้เครดิตพร้อมใส่ลิงก์ของทุกบทความที่มีการใช้เนื้อหาเสมอ

目次

日本による名言集
モジュール
-- numpy
-- matplotlib

-- pandas
-- manim
-- opencv
-- pyqt
-- pytorch
機械学習
-- ニューラル
     ネットワーク
javascript
モンゴル語
言語学
maya
確率論
日本での日記
中国での日記
-- 北京での日記
-- 香港での日記
-- 澳門での日記
台灣での日記
北欧での日記
他の国での日記
qiita
その他の記事

記事の類別



ติดตามอัปเดตของบล็อกได้ที่แฟนเพจ

  記事を検索

  おすすめの記事

ตัวอักษรกรีกและเปรียบเทียบการใช้งานในภาษากรีกโบราณและกรีกสมัยใหม่
ที่มาของอักษรไทยและความเกี่ยวพันกับอักษรอื่นๆในตระกูลอักษรพราหมี
การสร้างแบบจำลองสามมิติเป็นไฟล์ .obj วิธีการอย่างง่ายที่ไม่ว่าใครก็ลองทำได้ทันที
รวมรายชื่อนักร้องเพลงกวางตุ้ง
ภาษาจีนแบ่งเป็นสำเนียงอะไรบ้าง มีความแตกต่างกันมากแค่ไหน
ทำความเข้าใจระบอบประชาธิปไตยจากประวัติศาสตร์ความเป็นมา
เรียนรู้วิธีการใช้ regular expression (regex)
การใช้ unix shell เบื้องต้น ใน linux และ mac
g ในภาษาญี่ปุ่นออกเสียง "ก" หรือ "ง" กันแน่
ทำความรู้จักกับปัญญาประดิษฐ์และการเรียนรู้ของเครื่อง
ค้นพบระบบดาวเคราะห์ ๘ ดวง เบื้องหลังความสำเร็จคือปัญญาประดิษฐ์ (AI)
หอดูดาวโบราณปักกิ่ง ตอนที่ ๑: แท่นสังเกตการณ์และสวนดอกไม้
พิพิธภัณฑ์สถาปัตยกรรมโบราณปักกิ่ง
เที่ยวเมืองตานตง ล่องเรือในน่านน้ำเกาหลีเหนือ
ตระเวนเที่ยวตามรอยฉากของอนิเมะในญี่ปุ่น
เที่ยวชมหอดูดาวที่ฐานสังเกตการณ์ซิงหลง
ทำไมจึงไม่ควรเขียนวรรณยุกต์เวลาทับศัพท์ภาษาต่างประเทศ

ไทย

日本語

中文