φυβλαςのβλογ
บล็อกของ phyblas



numpy & matplotlib เบื้องต้น บทที่ ๑๖: แผนภาพการกระจาย
เขียนเมื่อ 2016/06/11 22:46
matplotlib มีคำสั่งที่ใช้ในการวาดแผนภาพการกระจายซึ่งมีไว้แสดงการแจกแจงของค่าต่างๆ นั่นคือ plt.scatter

การเขียนแผนภาพการกระจายจะคล้ายกับการเขียนกราฟเส้น เพียงแต่ไม่มีเส้น ส่วนคีย์เวิร์ดต่างๆมีคล้ายกัน และบางส่วนก็ต่างกัน

ลองเริ่มจากลองวาดแผนภาพการกระจายของการแจกแจงแบบปกติขึ้นมาเป็นตัวอย่างที่ง่ายที่สุด
import numpy as np
import matplotlib.pyplot as plt

x = np.random.randn(1000) # สุ่มค่า x
y = np.random.randn(1000) # สุ่มค่า y
plt.figure(figsize=[7,7]) # กำหนดขนาดภาพให้เป็นจตุรัส
plt.scatter(x,y) # วาดแผนภาพการกระจาย
plt.show()



จะเห็นว่าตรงกลางภาพซ้อนทับกันหนาแน่นไปหมด แบบนี้ดูความเปลี่ยนแปลงในการแจกแจงได้ยาก ดังนั้นอาจใส่ความโปร่งใสลงไปด้วยคีย์เวิร์ด alpha

นอกจากนี้ทั้งสี, รูปแบบ และขนาดของจุด ก็ทำได้เหมือนกับกราฟเส้น

คีย์เวิร์ดของแผนภาพการกระจายที่มักใช้บ่อย ได้แก่
color หรือ c สีของจุด
size หรือ s ขนาดของจุด
marker รูปแบบของจุด
alpha ความโปร่งใส
label ข้อความอธิบาย
linewidth หรือ lw ความกว้างขอบของจุด

จะเห็นว่าส่วนใหญ่ก็คล้ายกับกราฟเส้น แต่บางอย่างที่เหมือนกันแต่ชื่อต่างกันก็มี

linewidth หรือ lw นั้นถ้าเป็นใน plot จะเป็นความกว้างของเส้น แต่ใน scatter จะเป็นความกว้างของเส้นขอบจุด

ลองใส่คีย์เวิร์ดอะไรต่างๆ พร้อมทั้งกำหนดขอบเขตของกราฟเพิ่มเข้าไปด้วย แล้วดูกราฟใหม่อีกรอบ
x = np.random.randn(1000)
y = np.random.randn(1000)
plt.figure(figsize=[7,7])
plt.gca(xlim=[-4,4],ylim=[-4,4]) # กำหนดขอบเขต
plt.scatter(x,y,alpha=0.15,marker='o',s=50,c='#FFAA66',lw=0)
plt.show()



เท่านี้ก็จะเห็นการกระจายที่สวยงามมากขึ้น

ลูกเล่นต่อไปที่แผนภาพการกระจายทำได้เหนือกว่ากราฟเส้นก็คือ การที่จุดแต่ละจุดสามารถใส่สีต่างกันและทำให้ขนาดต่างกันได้

คีย์เวิร์ด c กับ s นั้นถ้าใส่เป็นข้อมูลเดี่ยวก็จะได้สีและขนาดเท่ากันหมดแต่ถ้าใส่เป็นลิสต์ ที่มีจำนวนเท่ากับจำนวนจุดก็จะได้จุดที่มีสีและขนาดต่างๆกันไป

ที่จริงแล้ว c กับ color นั้นมีข้อแตกต่างกันอยู่ และ s กับ size ก็มีข้อแตกต่างกัน คือ c กับ s จะใส่เป็นข้อมูลเดี่ยวหรือกลุ่มก็ได้ แต่ color กับ size จะต้องใส่เป็นข้อมูลเดี่ยวเท่านั้น นั่นคือสีเดียวและขนาดเดียว

เราลองสร้างชุดข้อมูลสุ่มขึ้นมาอีกอัน ไว้เป็นตัวกำหนดสีและขนาด ขนาดในที่นี้จะลองให้กำหนดจากระยะทาง ถ้าสมมุติว่าเรากำลังมองทรงกลมที่มีขนาดเท่ากันแต่อยู่ห่างไม่เท่ากันก็จะ เห็นอันที่ใกล้กว่ามีขนาดใหญ่กว่า โดยขนาดปรากฏแปรผกผันกับระยะทาง ทำแบบนี้แล้วจะให้ความรู้สึกเหมือนมองวัตถุที่ซ้อนกันอยู่ในสามมิติขึ้นมา ส่วนสีก็ให้อันที่อยู่ใกล้เป็นสีน้ำเงิน ที่อยู่ไกลสีแดง

ลองวาดใหม่ตามนี้
x = np.random.randn(1000)
y = np.random.randn(1000)
z = np.random.randn(1000) # ระยะแกน z ไม่ได้แสดงในภาพแต่ใช้เพื่อกำหนดขนาดและสี
s = 500/(z+4.5) # ขนาด ผกผันกับ z
c = np.vstack((0.5+z/10,0.3+z/20,0.5-z/10)).T # สีจากแม่สีทั้ง ๓ ที่เปลี่ยนค่าไปตาม z
plt.figure(figsize=[7,7])
plt.gca(xlim=[-4,4],ylim=[-4,4])
plt.scatter(x,y,alpha=0.15,marker='o',s=s,c=c,lw=2)
plt.show()





ลองนำแผนภาพการกระจายมาประกอบเข้ากับฮิสโทแกรมจะช่วยให้เห็นภาพรวมของการกระจายได้ดีขึ้น
x = np.random.randn(1000)-2
x[:500] += 4 # แยกตำแหน่งในแกน x ให้มีศูนย์กลาง ๒ ที่
y = np.random.randn(1000)
z = np.random.randn(1000)
s = 200/(z+4.5)
c = np.vstack((0.5+z/10,0.3+z/20,0.5-z/10)).T
ax1 = plt.subplot(221,xlim=[-6,6],ylim=[-4,4]) # แผนภาพหลัก
ax1.scatter(x,y,alpha=0.15,marker='o',s=s,c=c,lw=0)
ax1.xaxis.set_ticks_position('top') # ตั้งให้เลขบอกตำแหน่งอยู่ด้านบน
ax1.yaxis.set_ticks_position('left')
ax2 = plt.subplot(222,xlim=[0,60],ylim=[-4,4]) # ฮิสโทแกรมแกน y
ax2.hist(y,bins=50,orientation='horizontal')
ax2.xaxis.set_ticks_position('top')
ax2.yaxis.set_ticks_position('right')
ax3 = plt.subplot(223,xlim=[-6,6],ylim=[0,70]) # ฮิสโทแกรมแกน z
ax3.invert_yaxis() # พลิกกลับให้แท่งชี้ลง
ax3.hist(x,color='#AA22EE',bins=50)
ax3.xaxis.set_ticks_position('bottom')
ax3.yaxis.set_ticks_position('left')
plt.show()





อ้างอิง


<< บทที่แล้ว     บทถัดไป >>
หน้าสารบัญ


-----------------------------------------

囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧

ดูสถิติของหน้านี้

หมวดหมู่

-- คอมพิวเตอร์ >> เขียนโปรแกรม >> python >> matplotlib

ไม่อนุญาตให้นำเนื้อหาของบทความไปลงที่อื่นโดยไม่ได้ขออนุญาตโดยเด็ดขาด หากต้องการนำบางส่วนไปลงสามารถทำได้โดยต้องไม่ใช่การก๊อปแปะแต่ให้เปลี่ยนคำพูดเป็นของตัวเอง หรือไม่ก็เขียนในลักษณะการยกข้อความอ้างอิง และไม่ว่ากรณีไหนก็ตาม ต้องให้เครดิตพร้อมใส่ลิงก์ของทุกบทความที่มีการใช้เนื้อหาเสมอ

สารบัญ

รวมคำแปลวลีเด็ดจากญี่ปุ่น
python
-- numpy
-- matplotlib

-- pandas
-- pytorch
maya
การเรียนรู้ของเครื่อง
-- โครงข่าย
     ประสาทเทียม
บันทึกในญี่ปุ่น
บันทึกในจีน
-- บันทึกในปักกิ่ง
บันทึกในไต้หวัน
บันทึกในยุโรปเหนือ
บันทึกในประเทศอื่นๆ
เรียนภาษาจีน
qiita
บทความอื่นๆ

บทความแบ่งตามหมวด



ติดตามอัปเดตของบล็อกได้ที่แฟนเพจ

  ค้นหาบทความ

  บทความแนะนำ

หลักการเขียนทับศัพท์ภาษาจีนกวางตุ้ง
การใช้ unix shell เบื้องต้น ใน linux และ mac
หลักการเขียนทับศัพท์ภาษาจีนกลาง
g ในภาษาญี่ปุ่นออกเสียง "ก" หรือ "ง" กันแน่
ทำความรู้จักกับปัญญาประดิษฐ์และการเรียนรู้ของเครื่อง
ค้นพบระบบดาวเคราะห์ ๘ ดวง เบื้องหลังความสำเร็จคือปัญญาประดิษฐ์ (AI)
หอดูดาวโบราณปักกิ่ง ตอนที่ ๑: แท่นสังเกตการณ์และสวนดอกไม้
พิพิธภัณฑ์สถาปัตยกรรมโบราณปักกิ่ง
เที่ยวเมืองตานตง ล่องเรือในน่านน้ำเกาหลีเหนือ
บันทึกการเที่ยวสวีเดน 1-12 พ.ค. 2014
แนะนำองค์การวิจัยและพัฒนาการสำรวจอวกาศญี่ปุ่น (JAXA)
เล่าประสบการณ์ค่ายอบรมวิชาการทางดาราศาสตร์โดยโซวเคนได 10 - 16 พ.ย. 2013
ตระเวนเที่ยวตามรอยฉากของอนิเมะในญี่ปุ่น
เที่ยวชมหอดูดาวที่ฐานสังเกตการณ์ซิงหลง
บันทึกการเที่ยวญี่ปุ่นครั้งแรกในชีวิต - ทุกอย่างเริ่มต้นที่สนามบินนานาชาติคันไซ
หลักการเขียนคำทับศัพท์ภาษาญี่ปุ่น
ทำไมจึงไม่ควรเขียนวรรณยุกต์เวลาทับศัพท์ภาษาต่างประเทศ
ทำไมถึงอยากมาเรียนต่อนอก
เหตุผลอะไรที่ต้องใช้ภาษาวิบัติ?

บทความแต่ละเดือน

2019年

1月 2月 3月 4月
5月 6月 7月 8月
9月 10月 11月 12月

2018年

1月 2月 3月 4月
5月 6月 7月 8月
9月 10月 11月 12月

2017年

1月 2月 3月 4月
5月 6月 7月 8月
9月 10月 11月 12月

2016年

1月 2月 3月 4月
5月 6月 7月 8月
9月 10月 11月 12月

2015年

1月 2月 3月 4月
5月 6月 7月 8月
9月 10月 11月 12月

ค้นบทความเก่ากว่านั้น

ไทย

日本語

中文