φυβλαςのβλογ
บล็อกของ phyblas



สร้างข้อมูลกลุ่มรูปไข่ดาวเพื่อใช้ทดสอบการเรียนรู้ของเครื่อง
เขียนเมื่อ 2018/07/16 08:42
ก่อนหน้านี้เคยได้แนะนำการสร้างข้อมูลเป็นกลุ่มๆก้อนๆและพระจันทร์เสี้ยวเพื่อใช้ทดสอบแบบจำลองการเรียนรู้ของเครื่องไป
https://phyblas.hinaboshi.com/20161127
https://phyblas.hinaboshi.com/20171202

คราวนี้มาลองข้อมูลทดสอบอีกแบบ คือ make_circles เอาไว้สร้างข้อมูลที่มีการกระจายตัวเป็นวงสองวงซ้อนกันคล้ายไข่ดาว

ตัวอย่างการใช้ ถ้าใช้โดยไม่ได้ปรับแต่งอะไร ก็จะได้ ๑๐๐ จุด อยู่วงในและวงนอกอย่างเป็นระเบียบแบบนี้
import matplotlib.pyplot as plt
from sklearn import datasets

X,z = datasets.make_circles()
x,y = X.T
plt.gca(aspect=1)
plt.scatter(x,y,c=z,cmap='spring')
plt.show()



ถ้าใส่ตัวเลือกเพิ่มเติมเข้าไปสิ่งที่สามารถปรับแต่งได้มีดังนี้
  ความหมาย ค่าตั้งต้น
n_samples จำนวนข้อมูลทั้งหมด 100
shuffle จะสุ่มการจัดเรียงแต่ละกลุ่มหรือไม่ True
noise ขนาดของคลื่นรบกวน 0
factor อัตราส่วนขนาดวงในต่อวงนอก 0.8
random_state หมายเลขชุดของการสุ่ม None

ลองวาดภาพเทียบกรณีที่ค่า factor และ noise ต่างกันออกไปเทียบกันดู
plt.figure(figsize=[6,7])
for i,n in enumerate([0.1,0.2,0.3]):
    for j,f in enumerate([0.1,0.4,0.7]):
        X,z = datasets.make_circles(n_samples=150,noise=n,factor=f,random_state=111)
        x,y = X.T
        plt.subplot2grid((3,3),(i,j),xlim=[x.min(),x.max()],ylim=[y.min(),y.max()],xticks=[],yticks=[],aspect=1)
        plt.scatter(x,y,s=20,c=z,cmap='summer',edgecolor='k')
        plt.title('noise=%.1f,factor=%.1f'%(n,f),size=10)
plt.tight_layout()
plt.show()



ข้อมูลลักษณะแบบนี้เหมาะเอาไว้ใช้เป็นตัวอย่างเรื่องการใช้ลูกเล่นเคอร์เนล (kernel trick) หรือการแบ่งด้วยวิธีการที่ไม่เป็นเชิงเส้น

ต่อมา ลองสร้างชุดข้อมูลขึ้นมาแล้วทดสอบการแบ่งกลุ่มข้อมูลนี้ด้วยแบบจำลองการแบ่งกลุ่มที่ต่างกัน ๔ แบบดู
- การถดถอยโลจิสติก (逻辑回归, logistic regression)
- วิธีการเพื่อนบ้านใกล้สุด k ตัว (K-近邻算法, k-nearest neighbor, KNN)
- เครื่องเวกเตอร์ค้ำยัน (支持向量机, support vector machine, SVM)
- ป่าสุ่ม (随机森林, random forest)

ทั้งหมดนี้ก็ใช้ sklearn ทำทั้งหมด
import numpy as np
from sklearn.linear_model import LogisticRegression as Lori
from sklearn.neighbors import KNeighborsClassifier as Knn
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier as Rafo

X,z = datasets.make_circles(n_samples=200,noise=0.15,factor=0.25)
x,y = X.T
model = [Lori(),Knn(),SVC(),Rafo()]
chue = [u'การถดถอยโลจิสติก',u'เพื่อนบ้านใกล้สุด k ตัว',u'SVM',u'ป่าสุ่ม']
mx,my = np.meshgrid(np.linspace(x.min(),x.max(),200),np.linspace(y.min(),y.max(),200))
mX = np.array([mx.ravel(),my.ravel()]).T
plt.figure(figsize=[7,7])
for i,m in enumerate(model):
    m.fit(X,z)
    mz = m.predict(mX).reshape(200,200)
    plt.subplot(221+i,xlim=[x.min(),x.max()],ylim=[y.min(),y.max()],aspect=1)
    plt.scatter(x,y,c=z,edgecolor='k',cmap='autumn')
    plt.contourf(mx,my,mz,alpha=0.1,cmap='autumn')
    plt.title(chue[i],family='Tahoma')
plt.show()



จะเห็นได้ว่าแต่ละวิธีมีลักษณะการแบ่งที่ต่างกันออกไป
- การถดถอยโลจิสติกจะแบ่งได้แต่เส้นตรงเท่านั้น จึงไม่สามารถใช้ประโยชน์ในกรณีนี้ได้เลย
- เพื่อนบ้านใกล้สุด k ตัวจะแบ่งได้เส้นหยึกหยักไม่เรียบ
- SVM เมื่อใช้เคอร์เนล RBF จึงสามารถแบ่งเป็นเส้นโค้งเรียบ ดูแล้วแบ่งได้เป็นธรรมชาติที่สุด
- ป่าสุ่ม จะได้เส้นแบ่งตามแนวตั้งแนวนอนเป็นก้อนๆไม่สม่ำเสมอ


-----------------------------------------

囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧囧

ดูสถิติของหน้านี้

หมวดหมู่

-- คอมพิวเตอร์ >> ปัญญาประดิษฐ์
-- คอมพิวเตอร์ >> เขียนโปรแกรม >> python >> numpy
-- คอมพิวเตอร์ >> เขียนโปรแกรม >> python >> matplotlib
-- คอมพิวเตอร์ >> เขียนโปรแกรม >> python >> sklearn

ไม่อนุญาตให้นำเนื้อหาของบทความไปลงที่อื่นโดยไม่ได้ขออนุญาตโดยเด็ดขาด หากต้องการนำบางส่วนไปลงสามารถทำได้โดยต้องไม่ใช่การก๊อปแปะแต่ให้เปลี่ยนคำพูดเป็นของตัวเอง หรือไม่ก็เขียนในลักษณะการยกข้อความอ้างอิง และไม่ว่ากรณีไหนก็ตาม ต้องให้เครดิตพร้อมใส่ลิงก์ของทุกบทความที่มีการใช้เนื้อหาเสมอ

สารบัญ

รวมคำแปลวลีเด็ดจากญี่ปุ่น
python
-- numpy
-- matplotlib

-- pandas
-- pytorch
maya
การเรียนรู้ของเครื่อง
-- โครงข่าย
     ประสาทเทียม
บันทึกในญี่ปุ่น
บันทึกในจีน
-- บันทึกในปักกิ่ง
บันทึกในไต้หวัน
บันทึกในยุโรปเหนือ
บันทึกในประเทศอื่นๆ
เรียนภาษาจีน
qiita
บทความอื่นๆ

บทความแบ่งตามหมวด



ติดตามอัปเดตของบล็อกได้ที่แฟนเพจ

  ค้นหาบทความ

  บทความแนะนำ

หลักการเขียนทับศัพท์ภาษาจีนกวางตุ้ง
การใช้ unix shell เบื้องต้น ใน linux และ mac
หลักการเขียนทับศัพท์ภาษาจีนกลาง
g ในภาษาญี่ปุ่นออกเสียง "ก" หรือ "ง" กันแน่
ทำความรู้จักกับปัญญาประดิษฐ์และการเรียนรู้ของเครื่อง
ค้นพบระบบดาวเคราะห์ ๘ ดวง เบื้องหลังความสำเร็จคือปัญญาประดิษฐ์ (AI)
หอดูดาวโบราณปักกิ่ง ตอนที่ ๑: แท่นสังเกตการณ์และสวนดอกไม้
พิพิธภัณฑ์สถาปัตยกรรมโบราณปักกิ่ง
เที่ยวเมืองตานตง ล่องเรือในน่านน้ำเกาหลีเหนือ
บันทึกการเที่ยวสวีเดน 1-12 พ.ค. 2014
แนะนำองค์การวิจัยและพัฒนาการสำรวจอวกาศญี่ปุ่น (JAXA)
เล่าประสบการณ์ค่ายอบรมวิชาการทางดาราศาสตร์โดยโซวเคนได 10 - 16 พ.ย. 2013
ตระเวนเที่ยวตามรอยฉากของอนิเมะในญี่ปุ่น
เที่ยวชมหอดูดาวที่ฐานสังเกตการณ์ซิงหลง
บันทึกการเที่ยวญี่ปุ่นครั้งแรกในชีวิต - ทุกอย่างเริ่มต้นที่สนามบินนานาชาติคันไซ
หลักการเขียนคำทับศัพท์ภาษาญี่ปุ่น
ทำไมจึงไม่ควรเขียนวรรณยุกต์เวลาทับศัพท์ภาษาต่างประเทศ
ทำไมถึงอยากมาเรียนต่อนอก
เหตุผลอะไรที่ต้องใช้ภาษาวิบัติ?

บทความแต่ละเดือน

2019年

1月 2月 3月 4月
5月 6月 7月 8月
9月 10月 11月 12月

2018年

1月 2月 3月 4月
5月 6月 7月 8月
9月 10月 11月 12月

2017年

1月 2月 3月 4月
5月 6月 7月 8月
9月 10月 11月 12月

2016年

1月 2月 3月 4月
5月 6月 7月 8月
9月 10月 11月 12月

2015年

1月 2月 3月 4月
5月 6月 7月 8月
9月 10月 11月 12月

ค้นบทความเก่ากว่านั้น

ไทย

日本語

中文